首页 | 本学科首页   官方微博 | 高级检索  
     


Dirichlet and Neumann boundary conditions for the pressure poisson equation of incompressible flow
Authors:S. Abdallah  J. Dreyer
Abstract:In a recent paper Gresho and Sani showed that Dirichlet and Neumann boundary conditions for the pressure Poisson equation give the same solution. The purpose of this paper is to confirm this (for one case at least) by numerically solving the pressure equation with Dirichlet and Neumann boundary conditions for the inviscid stagnation point flow problem. The Dirichlet boundary condition is obtained by integrating the tangential component of the momentum equation along the boundary. The Neumann boundary condition is obtained by applying the normal component of the momentum equation at the boundary. In this work solutions for the Neumann problem exist only if a compatibility condition is satisfied. A consistent finite difference procedure which satisfies this condition on non-staggered grids is used for the solution of the pressure equation with Neumann conditions. Two test cases are computed. In the first case the velocity field is given from the analytical solution and the pressure is recovered from the solution of the associated Poisson equation. The computed results are identical for both Dirichlet and Neumann boundary conditions. However, the Dirichlet problem converges faster than the Neumann case. In the second test case the velocity field is computed from the momentum equations, which are solved iteratively with the pressure Poisson equation. In this case the Neumann problem converges faster than the Dirichlet problem.
Keywords:Incompressible Flow  Pressure Poisson Equation  Inviscid Flow  Boundary Conditions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号