首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Syntheses, structures, physical properties, and electronic structures of KLn2CuS4 (Ln=Y, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln=Dy, Ho)
Authors:Jiyong Yao  Donald E Ellis  James A Ibers
Institution:
  • a Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
  • b Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
  • Abstract:Seven new quaternary metal sulfides, KY2CuS4, KNd2CuS4, KSm2CuS4, KTb2CuS4, KHo2CuS4, K2Dy4Cu4S9, and K2Ho4Cu4S9, were prepared by the reactive flux method. All crystallographic data were collected at 153 K. The isostructural compounds KLn2CuS4 (Ln=Y, Nd, Sm, Tb, Ho) crystallize in space group Cmcm of the orthorhombic system with four formula units in cells of dimensions (Ln, a, b, c (Å)): Y, 3.9475(9), 13.345(3), 13.668(3); Nd, 4.0577(3), 13.7442(10), 13.9265(10); Sm, 4.0218(4), 13.6074(14), 13.8264(14); Tb, 3.9679(5), 13.4243(17), 13.7102(18); Ho, 3.9378(3), 13.3330(11), 13.6487(11). The corresponding R1 indices for the refined structures are 0.0197, 0.0153, 0.0158, 0.0181, and 0.0178. The isostructural compounds K2Dy4Cu4S9 and K2Ho4Cu4S9 crystallize in space group C2/m of the monoclinic system with two formula units in cells of dimensions (Ln, a, b, c (Å), β (°)): Dy, 13.7061(13), 3.9482(4), 15.8111(15), 109.723(1); Ho, 13.6760(14), 3.9360(4), 15.7950 (16), 109.666(2). The corresponding R1 indices are 0.0312 and 0.0207. Both structure types are closely related three-dimensional tunnel structures. The tunnels are filled with bicapped trigonal-prismatically coordinated K atoms. Their anionic frameworks are built from LnS6 octahedra and CuS4 tetrahedra. KLn2CuS4 contains 1CuS35−] chains of vertex-sharing tetrahedra and K2Ln4Cu4S9 contains 1Cu4S812−] chains of tetrahedra. K2Ho4Cu4S9 shows Curie-Weiss paramagnetic behavior between 5 and 300 K, and has an effective magnetic moment of 10.71 μB for Ho3+ at 293 K. Optical band gaps of 2.17 eV for KSm2CuS4 and 2.43 eV for K2Ho4Cu4S9 were deduced from diffuse reflectance spectra. A first-principles calculation of the density of states and the frequency-dependent optical conductivity was performed on KSm2CuS4. The calculated band gap of 2.1 eV is in good agreement with the experimental value.
    Keywords:
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号