首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Randomizing Quantum States: Constructions and Applications
Authors:Email author" target="_blank">Patrick?HaydenEmail author  Debbie?Leung  Peter W?Shor  Andreas?Winter
Institution:(1) Institute for Quantum Information, Caltech 107–81, Pasadena, CA 91125, USA;(2) Mathematical Sciences, Research Institute, 1000 Centennial Drive, Berkeley, CA 94720, USA;(3) AT & T Labs Research, Florham Park, NJ 07922, USA;(4) Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
Abstract:The construction of a perfectly secure private quantum channel in dimension d is known to require 2thinsplogthinspd shared random key bits between the sender and receiver. We show that if only near-perfect security is required, the size of the key can be reduced by a factor of two. More specifically, we show that there exists a set of roughly dthinsplogthinspd unitary operators whose average effect on every input pure state is almost perfectly randomizing, as compared to the d2 operators required to randomize perfectly. Aside from the private quantum channel, variations of this construction can be applied to many other tasks in quantum information processing. We show, for instance, that it can be used to construct LOCC data hiding schemes for bits and qubits that are much more efficient than any others known, allowing roughly thinsplogthinspd qubits to be hidden in 2thinsplogthinspd qubits. The method can also be used to exhibit the existence of quantum states with locked classical correlations, an arbitrarily large amplification of the correlation being accomplished by sending a negligibly small classical key. Our construction also provides the basic building block for a method of remotely preparing arbitrary d-dimensional pure quantum states using approximately thinsplogthinspd bits of communication and thinsplogthinspd ebits of entanglement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号