首页 | 本学科首页   官方微博 | 高级检索  
     


Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers
Authors:Diana?M.?Sima  author-information"  >  author-information__contact u-icon-before"  >  mailto:diana.sima@esat.kuleuven.ac.be"   title="  diana.sima@esat.kuleuven.ac.be"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Sabine?Van?Huffel,Gene?H.?Golub
Affiliation:(1) ESAT-SISTA, K.U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium;(2) Department of Computer Science, Stanford University, Stanford, CA 94305-9025, USA
Abstract:This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total Least Squares problem based on quadratic eigenvalue problems is presented. Discrete ill-posed problems are used as simulation examples in order to numerically validate the method.AMS subject classification (2000) 65F20, 65F30.Received March 2003. Revised November 2003. Accepted January 2004. Communicated by Per Christian Hansen.
Keywords:quadratic eigenvalue problem  regularization  Total Least Squares
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号