首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparative study of electrode effects on the electrical and luminescent characteristics of Alq3/TPD OLED: Improvements due to conductive polymer (PEDOT) anode
Authors:H Mu
Institution:Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221-0030, USA
Abstract:The performance of organic light emitting device (OLED) structures, based on identically fabricated Alq3/TPD active regions, with various anode and cathode electrode structures are compared, and performance differences related to the different anode structure. The best performance was achieved with a conductive polymer, 3,4-polyethylenedioxythiopene-polystyrenesultonate (PEDOT), used as an anode layer, yielding a brightness of 1720 cd/m2 at 25 V, a turn-on voltage of 3 V, and electroluminescence (EL) efficiency and external quantum efficiency of 8.2 cd/A and 2%, respectively, at a brightness of 100 cd/m2 and 5 V. Compared to a baseline device (TPD/Alq3/Al), PEDOT anodes substantially reduce the turn-on voltage and made current injection almost linear after turn-on, whiles devices incorporating a LiF and CuPc layers significantly improved device efficiency while slightly improving turn-on voltage and maintaining superlinear I-V injection. This is attributed to the reduced barrier at the organic-organic interface in PEDOT, the ‘ladder’ effect of stepping the band offset over several interfaces, and the favorable PEDOT film morphology. The benefit of the PEDOT anode is clearly seen in the improvement in device brightness and the high external quantum efficiency obtained.
Keywords:PEDOT  OLED  Organic luminescence devices
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号