首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers
Authors:Shu-Hong Xie  Yun-Ya Liu  Jiang-Yu Li
Institution:1. Faculty of Materials, Optoelectronics and Physics, and Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
2. Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
Abstract:Multiferroic materials with two or more types of ferroic orders have attracted a great deal of attention in the last decade for their magnetoelectric coupling, and new ideas and concepts have been explored recently to develop multiferroic materials at nano-scale. Motivated by theoretical analysis, we synthesized single-phase BiFeO3 (BFO) nanofibers, Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) and Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO) composite nanofibers, and CoFe2O4-Pb(Zr0.52Ti0.48)O3 (CFO-PZT) core-shell nanofibers using sol-gel based electrospinning. These nanofibers typically have diameters in the range of a few hundred nanometers and grain size in the range of 10s nanometers, and exhibits both ferroelectric and ferromagnetic properties. Piezoresponse force microscopy (PFM) based techniques have also been developed to examine the magnetoelectric coupling of the nanofibers, which is estimated to be two orders of magnitude higher than that of thin films, consistent with our theoretical analysis. These nanofibers are promising for a variety of multiferroic applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号