首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Blast waves from cylindrical charges
Authors:C Knock  N Davies
Institution:1. Cranfield University, Shrivenham, Swindon, Wilts, SN6 8LA, UK
Abstract:Comparisons of explosives are often carried out using TNT equivalency which is based on data for spherical charges, despite the fact that many explosive charges are not spherical in shape, but cylindrical. Previous work has shown that it is possible to predict the over pressure and impulse from the curved surface of cylindrical charges using simple empirical formulae for the case when the length-to-diameter (L/D) ratio is greater or equal to 2/1. In this paper, by examining data for all length-to-diameter ratios, it is shown that it is possible to predict the peak over pressure, P, for any length-to-diameter ratio from the curved side of a bare cylindrical charge of explosive using the equation $P=K_PM(L/D)^{1/3}/R^3$ , where M is the mass of explosive, R the distance from the charge and $ K_P$ is an explosive-dependent constant. Further out where the cylindrical blast wave ‘heals’ into a spherical one, the more complex equation $P=C_1(Z^{\prime \prime })^{-3}+C_2(Z^{\prime \prime })^{-2}+C_3(Z^{\prime \prime })^{-1}$ gives a better fit to experimental data, where $ Z^{\prime \prime } = M^{1/3}(L/D)^{1/9}/D$ and $C_1,\, C_2 $ and $ C_3$ are explosive-dependent constants. The impulse is found to be independent of the L/D ratio.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号