首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interplay between kinetically slow thermal spin-crossover and metastable high-spin state relaxation in an iron(II) complex with similar T1/2 and T(LIESST)
Authors:Money Victoria A  Carbonera Chiara  Elhaïk Jérôme  Halcrow Malcolm A  Howard Judith A K  Létard Jean-François
Institution:Department of Chemistry, University of Durham, South Road, Durham DH1 3 LE, UK.
Abstract:This paper describes the first material to show the well-known light-induced excited spin-state trapping (LIESST) effect, the metastable excited state of which relaxes at a temperature approaching its thermal spin-crossover. Cooling polycrystalline FeL(2)]BF(4)](2).x H(2)O (L=2,6-bis3-methylpyrazol-1-yl]pyridine; x=0-1/3) at 1 K min(-1) leads to a cooperative spin transition, taking place in two steps centered at 147 and 105 K, that is only 54 % complete by magnetic susceptibility. Annealing the sample at 100 K for 2 h results in a slow decrease in chi(M)T to zero, showing that the remainder of the spin-crossover can proceed, but is kinetically slow. The crystalline high- and fully low-spin phases of FeL(2)]BF(4)](2).x H(2)O are isostructural (C2/c, Z=8), but the spin-crossover proceeds via a mixed-spin intermediate phase that has a triple unit cell (C2/c, Z=24). The water content of the crystals is slowly lost on exposure to air without causing decomposition. However, the high-spin/mixed-spin transition in the crystal proceeds at 110+/-20 K when x=1/3 and 155+/-5 K when x=0, which correspond to the two spin-crossover steps seen in the bulk material. The high-spin state of the compound is generated quantitatively by irradiation of the low-spin or the mixed-spin phase at 10 K, and in approximately 70 % yield by rapidly quenching the sample to 10 K. This metastable high-spin state relaxes back to the low-spin ground state at 87+/-1 K in one, not two, steps, and without passing through the intermediate phase. This implies that thermal spin-crossover and thermally activated high-spin-low-spin relaxation in this material become decoupled, thus avoiding the physical impossibility of T(LIESST) being greater than T(1/2).
Keywords:coordination chemistry  iron  magnetic properties  photo‐magnetism  spin crossover
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号