首页 | 本学科首页   官方微博 | 高级检索  
     


Systematic evaluation of structure-activity relationships of the riminophenazine class and discovery of a C2 pyridylamino series for the treatment of multidrug-resistant tuberculosis
Authors:Liu Binna  Liu Kai  Lu Yu  Zhang Dongfeng  Yang Tianming  Li Xuan  Ma Chen  Zheng Meiqin  Wang Bin  Zhang Gang  Wang Fei  Ma Zhenkun  Li Chun  Huang Haihong  Yin Dali
Affiliation:State Key Laboratory of Bioactive Substances and Function of Natural Medicine & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
Abstract:Clofazimine, a member of the riminophenazine class of drugs, is the cornerstone agent for the treatment of leprosy. This agent is currently being studied in clinical trials for the treatment of multidrug-resistant tuberculosis to address the urgent need for new drugs that can overcome existing and emerging drug resistance. However, the use of clofazimine in tuberculosis treatment is hampered by its high lipophilicity and skin pigmentation side effects. To identify a new generation of riminophenazines that is less lipophilic and skin staining, while maintaining efficacy, we have performed a systematic structure-activity relationship (SAR) investigation by synthesizing a variety of analogs of clofazimine and evaluating their anti-tuberculosis activity. The study reveals that the central tricyclic phenazine system and the pendant aromatic rings are important for anti-tuberculosis activity. However, the phenyl groups attached to the C2 and N5 position of clofazimine can be replaced by a pyridyl group to provide analogs with improved physicochemical properties and pharmacokinetic characteristics. Replacement of the phenyl group attached to the C2 position by a pyridyl group has led to a promising new series of compounds with improved physicochemical properties, improved anti-tuberculosis potency, and reduced pigmentation potential.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号