首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational spectroscopy standoff detection of explosives
Authors:Leonardo C Pacheco-Londoño  William Ortiz-Rivera  Oliva M Primera-Pedrozo  Samuel P Hernández-Rivera
Institution:(1) Center for Chemical Sensors Development/ALERT DHS Center of Excellence for Explosives, Department of Chemistry, University of Puerto Rico-Mayagüez, PO Box 9019, Mayagüez, Puerto Rico, 00681-9019
Abstract:Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2–30 μg/cm2) for SIRS experiments and as particles (3–85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of ∼180° from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection–absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 μg/cm2 were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source–target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.
Keywords:Standoff infrared detection  Standoff Raman detection  High explosives  Explosive formulations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号