首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Square planar vs tetrahedral geometry in four coordinate iron(II) complexes
Authors:Hawrelak Eric J  Bernskoetter Wesley H  Lobkovsky Emil  Yee Gordon T  Bill Eckhard  Chirik Paul J
Institution:Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
Abstract:The geometric preferences of a family of four coordinate, iron(II) d6 complexes of the general form L2FeX2 have been systematically evaluated. Treatment of Fe2(Mes)4 (Mes = 2,4,6-Me3C6H2) with monodentate phosphine and phosphite ligands furnished square planar trans-P2Fe(Mes)2 derivatives. Identification of the geometry has been accomplished by a combination of solution and solid-state magnetometry and, in two cases (P = PMe3, PEt2Ph), X-ray diffraction. In contrast, both tetrahedral and square planar coordination has been observed upon complexation of chelating phosphine ligands. A combination of crystallographic and magnetic susceptibility data for (depe)Fe(Mes)2 (depe = 1,2-bis(diethylphosphino)ethane) established a tetrahedral molecular geometry whereas SQUID magnetometry and M?ssbauer spectroscopy on samples of (dppe)Fe(Mes)2 (dppe = 1,2-bis(diphenylphosphino)ethane) indicated a planar molecule. When dissolved in chlorinated solvents, the latter compound promotes chlorine atom abstraction, forming tetrahedral (dppe)Fe(Mes)Cl and (dppe)FeCl2. Ligand substitution reactions have been studied for both structural types and are rapid on the NMR time scale at ambient temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号