首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The bonding in hexagonal Ba2/3Pt3B2 and CeCo3B2 type ternary metal borides
Authors:Seeyearl Seong  Sik Young Choi and Thomas A Albright
Institution:(1) Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA;(2) Present address: Department of Applied Chemistry, Andong National University, Andong, 760-749, Korea;;
Abstract:Tight-binding calculations with an extended Hückel Hamiltonian were performed on Ba2/3Pt3B2 and LuOs3B2. Hypothetical linear metal boride chains present in these materials are analyzed with a three-dimensional model that contains a trigonal bipyramidal T3B2 (T = transition metal) building unit for the compounds. The geometrical structure for the T3B2 trigonal bipyramids depends on the number of electrons. For systems that have greater than 36 electrons in its trigonal bipyramidal building unit, a structural distortion is expected. Electron back donation from the electron-rich M3 fragment to the empty e′ set on B2 creates boron–boron interaction along the z-axis. Boron–boron pairing then participates as an electron sink and causes a trigonal distortion of the platinum Kagome net. On the other hand, a system with <35 electrons should have an undistorted, CeCo3B2 type structure. The electronic factors that create the breathing motion are discussed and analyzed with the aid of molecular and solid-state models. The metal–metal bonding associated with the structural properties also has been examined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号