首页 | 本学科首页   官方微博 | 高级检索  
     


Establishing the microstructure-strengthening correlation in severely deformed surface of titanium
Authors:Sumit Bahl  Bhavya Tulasi Aleti  Satyam Suwas
Affiliation:Department of Materials Engineering, Indian Institute of Science, Bangalore, India
Abstract:Surface nanostructuring of engineering materials can be utilised to enhance materials performance for various applications. The aim of this work was to investigate the evolution of microstructure and its correlation with strengthening mechanisms in nanocrystalline commercially pure titanium (cp-Ti) produced by surface mechanical attrition treatment (SMAT). The individual contributions of dislocation slip and twining as the deformation mechanisms during SMAT have been quantified using X-ray line profile analysis and corroborated with transmission electron microscopy and electron backscattered diffraction techniques. It is found that twining is operative only in the early stages of deformation. The absence of twin–twin intersections suggests that twining is not directly responsible for the initial refinement of grain size. Dislocation slip is the major deformation mode, which leads to the refinement of the microstructure by forming low-angle lamellar boundaries. Continuous dynamic recrystallisation is demonstrated to be the mechanism of nanocrystallisation in cp-Ti using detailed microscopic analysis. In contrast to previous studies, which have neglected the contribution of Taylor strengthening, it is observed that a combination of Hall–Petch and Taylor relationships can explain the strength only if separate set of parameters K (Hall–Petch constant) and α (geometrical factor in Taylor relationship) are used for the nanocrystalline surface and severely deformed sub-surface of cp-Ti. Taken together, this work provides new insights into the underlying mechanisms for engineering nanocrystalline materials.
Keywords:Severe plastic deformation  surface mechanical attrition treatment  commercially pure titanium  dislocations  twinning  strengthening mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号