首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solvent effects on the electrochemical p-doping of PEDOT
Authors:Robert Hillman A  Daisley Samantha J  Bruckenstein Stanley
Institution:Department of Chemistry, University of Leicester, Leicester, UKLE1 7RH. arh7@le.ac.uk.
Abstract:EQCM experiments were carried out on PEDOT films exposed to TEABF(4)/CH(3)CN and TEABF(4)/CH(2)Cl(2) under permselective conditions and subjected to cyclic voltammetry in the potential range corresponding to p-doping. Current and frequency responses were used to obtain time-resolved ion and solvent flux data as functions of potential. Normalization of these fluxes with potential scan rate distinguishes thermodynamically (ir)reversible elementary steps in the overall redox process. The specific mechanisms are different in the two solvents, although both show mechanistic switches at partial redox conversion during both p-doping and undoping. These different mechanistic signatures are characterized according to the solvent identity, by different patterns of deviation from scan rate normalization for the experimentally measured ion and solvent fluxes. Comparison of these ion and solvent fluxes demonstrates that the rates of solvent expulsion (during doping) and entry (during undoping) are key determinants of mechanism. In both switching directions there are changes between kinetically limiting and rapid solvent transfer that depend upon solvent identity, i.e. the mechanism depends substantially upon charge state, switching direction and solvent. These mechanistic pathways and shifts can be visualized by a scheme-of-cubes representation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号