首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enantioselective synthesis of chiral sulfones by Rh-catalyzed asymmetric addition of boronic acids to alpha,beta-unsaturated 2-pyridyl sulfones
Authors:Mauleón Pablo  Alonso Inés  Rivero Marta Rodríguez  Carretero Juan C
Institution:Departamento de Química OrgAnica, Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Abstract:A general and efficient method for the rhodium-catalyzed enantioselective catalytic conjugate addition of organoboronic acids to alpha,beta-unsaturated sulfones is described. The success of the process relies on the use of alpha,beta-unsaturated 2-pyridyl sulfones as key metal-coordinating substrates; typical sulfones such as vinyl phenyl sulfones are inert under the reaction conditions. Among a variety of chiral ligands, Chiraphos provided the best asymmetric induction. This rhodium Rh(acac)(C2H4)2]/Chiraphos catalyst system has a broad scope, being applicable to the addition of both aryl and alkenyl boronic acids to cis and trans alpha,beta-unsaturated 2-pyridyl sulfones. In most cases, especially in the addition of aryl boronic acids, the reactions take place cleanly and with high enantioselectivity, affording chiral beta-substituted 2-pyridyl sulfones in good yields and enantioselectivities (70-92% ee). The sense and magnitude of this enantioselectivity have been studied by DFT theoretical calculations of the aryl-rhodium insertion step. These calculations strongly support the formation of a five-membered pyridyl-rhodium chelated species as the most stable complex after the insertion into the C=C bond. These highly enantioenriched chiral sulfones are very appealing building blocks in enantioselective synthesis. For instance, the straightforward elimination of the 2-pyridylsulfonyl group by either Julia-Kociensky olefination or alkylation/desulfonylation sequences provides a variety of functionalized chiral compounds, such as allylic substituted alkenes or beta-substituted ketones and esters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号