A new probabilistic fuzzy model: Fuzzification–Maximization (FM) approach |
| |
Authors: | Sungjun Hong Heesung Lee Euntai Kim |
| |
Affiliation: | aSchool of Electrical and Electronic Engineering, Yonsei University, C613, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea |
| |
Abstract: | Over the past few decades, fuzzy logic systems have been used for nonlinear modeling and approximation in many fields ranging from engineering to science. In this paper, a new fuzzy model is developed from the probabilistic and statistical point of view. The proposed model decomposes the input–output characteristics into noise-free part and probabilistic noise part and identifies them simultaneously. The noise-free model recovers the nominal input–output characteristics of the target system and the noise model gives approximation to the probabilistic nature of the added noise. To identify the two submodels simultaneously, we propose the Fuzzification–Maximization (FM). Finally, some simulations are conducted and the effectiveness of the proposed method is demonstrated through the comparison with the previous methods. |
| |
Keywords: | Probabilistic fuzzy model Robust learning Noise Coarse tuning Fine tuning Fuzzification– Maximization |
本文献已被 ScienceDirect 等数据库收录! |
|