首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular elimination in photolysis of o- and p-fluorotoluene at 193 nm: Internal energy of HF determined with time-resolved Fourier transform spectroscopy
Authors:Yang Sheng-Kai  Liu Suet-Yi  Chen Hui-Fen  Lee Yuan-Pern
Affiliation:Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
Abstract:Following the photodissociation of o-fluorotoluene [o-C(6)H(4)(CH(3))F] at 193 nm, rotationally resolved emission spectra of HF(1< or =v< or =4) in the spectral region of 2800-4000 cm(-1) are detected with a step-scan Fourier transform spectrometer. HF(v< or =4) shows nearly Boltzmann-type rotational distributions corresponding to a temperature approximately 1080 K; a short extrapolation from data in the period of 0.5-4.5 mus leads to a nascent rotational temperature of 1130+/-100 K with an average rotational energy of 9+/-2 kJ mol(-1). The observed vibrational distribution of (v=1):(v=2):(v=3)=67.6: 23.2: 9.2 corresponds to a vibrational temperature of 5330+/-270 K. An average vibrational energy of 25+/-(3) (12) kJ mol(-1) is derived based on the observed population of HF(1< or =v< or =3) and estimates of the population of HF (v=0 and 4) by extrapolation. Experiments performed on p-fluorotoluene [p-C(6)H(4)(CH(3))F] yielded similar results with an average rotational energy of 9+/-2 kJ mol(-1) and vibrational energy of 26+/-(3) (12) kJ mol(-1) for HF. The observed distributions of internal energy of HF in both cases are consistent with that expected for four-center elimination. A modified impulse model taking into account geometries and displacement vectors of transition states during bond breaking predicts satisfactorily the rotational excitation of HF. An observed vibrational energy of HF produced from fluorotoluene slightly smaller than that from fluorobenzene might indicate the involvement of seven-membered-ring isomers upon photolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号