首页 | 本学科首页   官方微博 | 高级检索  
     

感应耦合非热等离子体催化转化二氧化碳
引用本文:Edwin Devi,Maria Ronda-Lloret,Qiang Huang,Gadi Rothenberg,N. Raveendran Shiju,Aart Kleyn. 感应耦合非热等离子体催化转化二氧化碳[J]. 化学物理学报, 2020, 33(2): 243-251
作者姓名:Edwin Devi  Maria Ronda-Lloret  Qiang Huang  Gadi Rothenberg  N. Raveendran Shiju  Aart Kleyn
作者单位:中国工程物理研究院材料研究所,可持续界面动力学研究中心,成都 610200,荷兰阿姆斯特丹大学范特霍夫分子科学研究所, 阿姆斯特丹 94157,中国工程物理研究院材料研究所,可持续界面动力学研究中心,成都 610200;重庆邮电大学光电工程学院, 重庆 400065,荷兰阿姆斯特丹大学范特霍夫分子科学研究所, 阿姆斯特丹 94157,荷兰阿姆斯特丹大学范特霍夫分子科学研究所, 阿姆斯特丹 94157,中国工程物理研究院材料研究所,可持续界面动力学研究中心,成都 610200
基金项目:Maria Ronda-Lloret is acknowledged for her support in analysing the metal mesh samples by SEM and XRD. Di-yu Zhang, Dong-ping Wang and Qiang Huang are accredited for their discussions and support on CO2 splitting experiments. Chuan-hui Liang is acknowl-edged for his support in analysing the metal mesh samples by XPS. Gadi Rothenberg and N. Raveendran Shiju are accredited for their scientific discussions on CO2 splitting and catalytic processes. This work is supported by the National Natural Science Foundation of China (No.51561135013 and No.21603202). We thank the Netherlands Scientific Organisation (NWO) for the grant “Developing novel catalytic materials for converting CO2, methane and ethane to high-value chemicals in a hybrid plasma-catalytic reactor” (China.15.119).
摘    要:射频感应耦合等离子体能够在室温条件下选择活化并分解二氧化碳,本文通过调控等离子体放电条件(气体流量、放电频率等)获得了较高的一氧化碳产率. 研究发现网状金属催化剂在二氧化碳等离子体中能促进氧原子的复合反应,从而有效抑制其与目标产物一氧化碳的逆反应,提升反应整体效率. 本文为实时转化过剩的可再生电能(来自太阳能、风能、潮汐能等)为高附加值一氧化碳中的化学能提供了一个可行的方案.

关 键 词:射频感应耦合等离子体,等离子体反应器,转换,金属网,四极质谱,X射线光电子能谱,X射线衍射,扫描电子显微镜
收稿时间:2020-03-20

Conversion of CO2 by non-Thermal Inductively-Coupled Plasma Catalysis
Edwin Devi,Maria Ronda-Lloret,Qiang Huang,Gadi Rothenberg,N. Raveendran Shiju and Aart Kleyn. Conversion of CO2 by non-Thermal Inductively-Coupled Plasma Catalysis[J]. Chinese Journal of Chemical Physics, 2020, 33(2): 243-251
Authors:Edwin Devi  Maria Ronda-Lloret  Qiang Huang  Gadi Rothenberg  N. Raveendran Shiju  Aart Kleyn
Abstract:CO2 decomposition is a very strongly endothermic reaction where very high temperatures are required to thermally dissociate CO2. Radio frequency inductively-coupled plasma enables to selectively activate and dissociate CO2 at room temperature. Tuning the flow rate and the frequency of the radio frequency inductively-coupled plasma gives high yields of CO under mild conditions. Finally the discovery of a plasma catalytic effect has been demonstrated for CO2 dissociation that shows a significant increase of the CO yield by metallic meshes. The metallic meshes become catalysts under exposure to plasma to activate the recombination reaction of atomic O to yield O2, thereby reducing the reaction to convert CO back to CO2. Inductively-coupled hybrid plasma catalysis allows access to study and to utilize high CO2 conversion in a non-thermal plasma regime. This advance offers opportunities to investigate the possibility to use radio frequency inductively-coupled plasma to store superfluous renewable electricity into high-valuable CO in time where the price of renewable electricity is plunging.
Keywords:CO2   Radio frequency inductively-coupled plasma   Plasma reactor   Conversion  Metal mesh   Quadrupole mass spectrometry   X-ray photo-electron spectroscopy   X-Ray diffraction   Scanning electron microscopy
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号