首页 | 本学科首页   官方微博 | 高级检索  
     


8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope
Authors:Zhu Yue  Pavlos Christopher M  Toscano John P  Dore Timothy M
Affiliation:Department of Chemistry, University of Georgia, Athens, 30602-2556, USA.
Abstract:Two-photon excitation (2PE) of "caged" biomolecules represents a powerful method to investigate the temporal and spatial relevance of physiological function in real time and on living tissue, because the excitation volume can be restricted to 1 fL. Additionally, low-energy IR light is used, which minimizes tissue destruction and enables deeper penetration into tissue preparations. Exploitation of this technology for studying cell physiology requires the further development of photoremovable protecting groups with sufficient sensitivity to 2PE for use in "caged" compounds. 8-Bromo-7-hydroxyquinoline (BHQ) is efficiently photolyzed by classic 1PE (365 nm) and 2PE (740 nm) under simulated physiological conditions (aqueous buffer of high ionic strength, pH 7.2) to release carboxylates, phosphates, and diols-functional groups commonly found on bioactive molecules such as neurotransmitters, nucleic acids, and drugs. It is stable in the dark, soluble in water, and exhibits low levels of fluorescence, which will enable use in conjunction with fluorescent indicators of biological function. BHQ-protected effectors are synthetically accessible. Stern-Volmer quenching, time-resolved infrared (TRIR), and (18)O-labeling experiments suggest that the photolysis occurs through a solvent-assisted photoheterolysis (S(N)1) reaction mechanism on the sub-microsecond time scale. BHQ has the requisite photochemical and photophysical properties as a photoremovable protecting group to regulate the action of biological effectors in cell and tissue culture with light, especially 2PE.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号