首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution
Authors:Bhargava Prachur  Tu Yingfeng  Zheng Joseph X  Xiong Huiming  Quirk Roderic P  Cheng Stephen Z D
Institution:The Maurice Morton Institute and Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, USA.
Abstract:Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles with degrees of polymerization of 962 for the PS and 227 for the PEO blocks (PS962-b-PEO227) in N,N-dimethylformamide (DMF)/water, in which water is a selective solvent for the PEO block, were observed. For a system with 0.2 wt % copolymer concentration and 4.5 wt % water concentration in DMF/water, the micelle morphology observed in transmission electron microscopy changed from vesicles at room temperature to worm-like cylinders and then to spheres with increasing temperature. Mixed morphologies were also formed in the intermediate temperature regions. Cooling the system back to room temperature regenerated the vesicle morphology, indicating that the morphological changes were reversible. No hysteresis was observed in the morphological changes during heating and cooling. Dynamic light scattering revealed that the hydrodynamic radius of the micelles decreased with increasing temperature. Combined static and dynamic light scattering results supported the change in morphology with temperature. The critical micellization temperatures and critical morphological transition temperatures were determined by turbidity measurements and were found to be dependent on the copolymer and water concentrations in the DMF/water system. The morphological changes were only possible if the water concentration in the DMF/water system was low, or else the mobility of the PS blocks would be severely restricted. The driving force for these morphological changes was understood to be mainly a reduction in the free energy of the corona and a minor reduction in the free energy of the interface. Morphological observations at different time periods of isothermal experiments indicated that in the pathway from one equilibrium morphology to another, large compound micelles formed as an intermediate or metastable stage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号