首页 | 本学科首页   官方微博 | 高级检索  
     


Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study
Authors:Okumura Toyoki  Fukutsuka Tomokazu  Matsumoto Keisuke  Orikasa Yuki  Arai Hajime  Ogumi Zempachi  Uchimoto Yoshiharu
Affiliation:Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Japan.
Abstract:The electronic and local structures of partially anion-substituted lithium manganese spinel oxides as positive electrodes for lithium-ion batteries were investigated using X-ray absorption spectroscopy (XAS). LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0, 0.018, 0.036, 0.055, 0.073, 0.110, 0.180) were synthesized by the reaction between LiMn(1.8)Li(0.1)Ni(0.1)O(4) and NH(4)HF(2). The shift of the absorption edge energy in the XANES spectra represented the valence change of Mn ion with the substitution of the low valent cation as Li(+), Ni(2+), or F(-) anion. The local structural change at each compound with the amount of a Jahn-Teller Mn(3+) ion could be observed by EXAFS spectra. The discharge capacity of the tested electrode was in the order of LiMn(2)O(4) > LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) > LiMn(1.8)Li(0.1)Ni(0.1)O(4) while the cycleability was in the order of LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) ≈ LiMn(1.8)Li(0.1)Ni(0.1)O(4) > LiMn(2)O(4). It was clarified that LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) has a good cycleability because of the anion doping effect and simultaneously shows acceptable rechargeable capacity because of the large amount of the Jahn-Teller Mn(3+) ions in the pristine material.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号