首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption mechanisms of glucose in aqueous goethite suspensions
Authors:Olsson Rickard  Giesler Reiner  Persson Per
Affiliation:1. Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden;2. Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
Abstract:The adsorption of glucose and polysaccharides onto solid surfaces is important in several areas of science and engineering including soil chemistry and mineral processing. In this work we have studied the adsorption of D-glucose at the water-goethite (α-FeOOH) interface as a function of pH using batch adsorption measurements and a simultaneous infrared and potentiometric technique. Molecular orbital calculations were also performed in order to support interpretations of the infrared spectroscopic data. Infrared spectroscopy has shown that glucose adsorbs at the water-goethite interface with an intact ring structure and that the β-form is favored relative to the α isomer. The collective spectroscopic and macroscopic results were fully consistent with an adsorption mechanism where glucose interacts with goethite surface sites via hydrogen bonding interactions. Specific infrared peak shifts indicated that glucose primarily acts as a hydrogen bond donor and that it interacts with acceptor sites that become increasingly more prevalent as the surface is deprotonated. These results are in general agreement with the acid/base model for mono- and polysaccharide interactions at metal oxide surfaces, but contradict the inner sphere hypothesis that was proposed based on ex situ spectroscopic measurements.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号