首页 | 本学科首页   官方微博 | 高级检索  
     


A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method for screening synthetic cannabinoids and other drugs of abuse in urine
Authors:Mira Sundström  Anna Pelander  Verena Angerer  Melanie Hutter  Stefan Kneisel  Ilkka Ojanperä
Affiliation:1. Forensic Toxicology Division, Department of Forensic Medicine, Hjelt Institute, University of Helsinki, P.O. Box 40, 00014, Helsinki, Finland
2. Institute of Forensic Medicine, University Medical Center Freiburg, Albertstr. 9, 79104, Freiburg, Germany
3. Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104, Freiburg, Germany
Abstract:The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50–700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2–60 ng/mL and for cathinones 0.7–15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method’s feasibility was demonstrated with 50 authentic urine samples.
Figure
Extracted ion chromatograms of metabolites of synthetic cannabinoids and their fragments, including a new common metabolite: JWH-072-propanoic acid
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号