首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental investigation of the effect of collisions and temperature on degenerate four-wave mixing
Authors:P. Ljungberg  O. Axner
Affiliation:(1) The Analytical Laser Spectroscopy Group, Department of Physics, Chalmers University of Technology and The University of Göteborg, S-41296 Göteborg, Sweden;(2) Department of Experimental Physics, Umeå University, S-901 87 Umeå, Sweden
Abstract:An experimental investigation (including a comparison with a simple theoretical model) of the effect of buffer-gas composition, pressure and temperature on resonant Degenerate Four-Wave Mixing (DFWM) has been performed. The DFWM signal from NO in a quartz cell was measured and the effect of quenching as well as elastic (phase-changing) collisions was studied by varying the total and partial pressures of N2 and CO2 as buffer gases. It was found that the DFWM signal first slowly increased with buffer-gas pressure (up to 10 mbar) and then rapidly decreased. It was furthermore found that the DFWM signal was considerably less sensitive to quenching collisions as compared to Laser-Induced Fluorescence (LIF) (for laser intensities approximately equal to half the DFWM saturation intensity of the transition). On the other hand, while LIF is virtually insensitive to elastic collisions, DFWM displays a larger sensitivity to elastic collisions than to quenching collisions. The DFWM saturation intensity was found to increase with buffer-gas pressure (although slower than expected). When varying the temperature of the gas composition, it was found that the DFWM signal decreased markedly with increasing temperature. This decrease is too fast to be explained solely by a change in the population of the molecular state probed by the laser.
Keywords:35.80. + s  42.65.Hw  51.70. + f
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号