首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assembly of Bacteriophage into Functional Materials
Authors:Sung Ho Yang  Woo‐Jae Chung  Sean McFarland  Seung‐Wuk Lee
Institution:1. Department of Bioengineering, University of California, Berkeley, California 94720, USA;2. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Abstract:For the last decade, the fabrication of ordered structures of phage has been of great interest as a means of utilizing the outstanding biochemical properties of phage in developing useful materials. Combined with other organic/inorganic substances, it has been demonstrated that phage is a superior building block for fabricating various functional devices, such as the electrode in lithium‐ion batteries, photovoltaic cells, sensors, and cell‐culture supports. Although previous research has expanded the utility of phage when combined with genetic engineering, most improvements in device functionality have relied upon increases in efficiency owing to the compact, more densely packable unit size of phage rather than on the unique properties of the ordered nanostructures themselves. Recently, self‐templating methods, which control both thermodynamic and kinetic factors during the deposition process, have opened up new routes to exploiting the ordered structural properties of hierarchically organized phage architectures. In addition, ordered phage films have exhibited unexpected functional properties, such as structural color and optical filtering. Structural colors or optical filtering from phage films can be used for optical phage‐based sensors, which combine the structural properties of phage with target‐specific binding motifs on the phage‐coat proteins. This self‐templating method may contribute not only to practical applications, but also provide insight into the fundamental study of biomacromolecule assembly in in vivo systems under complicated and dynamic conditions.
Keywords:bacteriophage  functional materials  liquid crystals  self‐assembly  template synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号