An investigation of non-newtonian flow past a sphere |
| |
Authors: | K. Adachi N. Yoshika K. Sakai |
| |
Affiliation: | Department of Chemical Engineering, Kyoto University, Kyoto, 606 Japan |
| |
Abstract: | Any experimental work on the flow of a polymer solution or any theoretical analysis on the basis of a visoelastic constitutive equation does not always bring out viscoelastic effects but may be showing a non-Newtonian viscosity effect. Therefore, in order to obtain a clear understanding about viscoelastic effects, it is desirable to have a sufficient knowledge of the non-Newtonian viscosity effect. To facilitate this, finite-difference numerical solutions of non-Newtonian flow were carried out using a non-Newtonian viscous model for the Reynolds numbers of 0.1, 1.0, 20 and 60.Drag force measurements and flow visualization experiments were also performed over a wide range of experimental conditions using polymer solutions. The present work appears to support the following idea: When compared with the Newtonian case on the basis of DV∞P/η0, where η0 is the zero shear viscosity, it is on account of the non-Newtonian viscosity that the friction and pressure drags decrease, that the separating vortices behind the sphere become larger, and that no shift occurs in the streamlines. On the other hand, it is due to viscoelasticity that the normal force drag increases, that the separating vortices behind the sphere become smaller, and that an upstream shift occurs in the streamlines. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|