首页 | 本学科首页   官方微博 | 高级检索  
     


Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions
Authors:Hartlen Kurtis D  Ismaili Hossein  Zhu Jun  Workentin Mark S
Affiliation:Department of Chemistry and the Centre of Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
Abstract:The chemical interfacial modification of organic solvent soluble 2.4 ± 0.5 nm maleimide-modified monolayer protected gold nanoparticles (2-C(12)AuNPs) with primary or secondary amines via Michael addition reactions is demonstrated. Michael addition reactions between 2-C(12)AuNPs and primary or secondary amines at ambient temperature and pressure and under the conditions where the AuNP is soluble and stable are possible albeit sluggish, often taking days to weeks to go to completion. The rates and efficacies of the these same reactions are drastically increased at hyperbaric pressure conditions (11?000 atm) with no observed adverse effect to the gold nanoparticle stability. The resulting Michael addition adducts (3-C(12)AuNPs) formed from 2-C(12)AuNPs and the corresponding amines were characterized by TEM and by comparison of the (1)H NMR spectra of the 3-C(12)AuNPs with those of model reactions of the same amines with N-dodecylmaleimide, 2. The Michael addition reactions occur more readily with 2 rather than 2-C(12)AuNPs, consistent with the local environment of the latter imposing additional steric or other barriers to the reaction. The use of hyperbaric conditions makes the reaction of the organic solvent soluble 2-C(12)AuNP via Michael addition a viable interfacial modification process that is otherwise impractical. The results also suggest that it is a useful protocol for facilitating Michael addition reactions generally in solution at low temperatures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号