首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Normal and inverse primary kinetic deuterium isotope effects for C-H bond reductive elimination and oxidative addition reactions of molybdenocene and tungstenocene complexes: evidence for benzene sigma-complex intermediates
Authors:Churchill David G  Janak Kevin E  Wittenberg Joshua S  Parkin Gerard
Institution:Department of Chemistry, Columbia University, New York, New York 10027, USA.
Abstract:The overall reductive elimination of RH from the ansa-molybdenocene and -tungstenocene complexes Me(2)Si(C(5)Me(4))(2)]Mo(Ph)H and Me(2)Si(C(5)Me(4))(2)]W(R)H (R = Me, Ph) is characterized by an inverse primary kinetic isotope effect (KIE) for the tungsten system but a normal KIE for the molybdenum system. Oxidative addition of PhH to Me(2)Si(C(5)Me(4))(2)]M] also differs for the two systems, with the molybdenum system exhibiting a substantial intermolecular KIE, while no effect is observed for the tungsten system. These differences in KIEs indicate a significant difference in the reactivity of the hydrocarbon adducts Me(2)Si(C(5)Me(4))(2)]M(RH) for the molybdenum and tungsten systems. Specifically, oxidative cleavage of Me(2)Si(C(5)Me(4))(2)]M(RH) is favored over RH dissociation for the tungsten system, whereas RH dissociation is favored for the molybdenum system. A kinetics analysis of the interconversion of Me(2)Si(C(5)Me(4))(2)]W(CH(3))D and Me(2)Si(C(5)Me(4))(2)]W(CH(2)D)H, accompanied by elimination of methane, provides evidence that the reductive coupling step in this system is characterized by a normal KIE. This observation demonstrates that the inverse KIE for overall reductive elimination is a result of an inverse equilibrium isotope effect (EIE) and is not a result of an inverse KIE for a single step. A previous report of an inverse kinetic isotope effect of 0.76 for C-H reductive coupling in the Tp]Pt(CH(3))H(2) system is shown to be erroneous. Finally, a computational study provides evidence that the reductive coupling of Me(2)Si(C(5)Me(4))(2)]W(Ph)H proceeds via the initial formation of a benzene sigma-complex, rather than an eta(2)-pi-benzene complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号