首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the mechanism of NO–C2H4 reactions on the surface of stepped Pt(3 3 2)
Authors:Yuhai Hu  Keith Griffiths  
Affiliation:aDepartment of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Abstract:Fourier transform infra red reflection–absorption spectroscopy (FTIR-RAS), thermal desorption spectroscopy (TDS), and auger electron spectroscopy (AES), were employed to explore the mechanism of NO reduction in the presence of C2H4 on the surface of stepped Pt(3 3 2). Both NO–Pt and C2H4–Pt interactions are enhanced when NO and C2H4 are co-adsorbed on Pt(3 3 2). As a result, C2H4 is dissociated at surface temperatures as low as 150 K, and the N–O stretch band is weakened. The presence of post-exposed C2H4 leads NO desorption from steps to decrease significantly, but the same effect on NO desorption from terraces becomes appreciable only at higher post-exposures of C2H4, e.g., 0.6 L and 1.2 L, and proceeds to a much slighter extent. Auger spectra indicate that as a result of the reaction with O from NO dissociation, the amount of surface C species is greatly reduced when NO is post-exposed to a C2H4 adlayer. It is concluded that reduction of NO in the presence of C2H4 proceeds very effectively on the surface of the Pt(3 3 2), through a mechanism of NO dissociation and subsequent O removal. Following this mechanism, the significant dissociation of adsorbed NO molecules on steps at surface temperatures below 400 K, and subsequent rapid reaction between the resultant O and C-related species, accounts for the considerable amount of N2 desorption at temperatures below 400 K.
Keywords:NO   Platinum   Ethylene   DeNOx   Hydrocarbon   Selective catalytic reduction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号