首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlling the BET Surface Area of Porous Carbon by Using the Cd/C Ratio of a Cd–MOF Precursor and Enhancing the Capacitance by Activation with KOH
Authors:Dr Zuo‐Xi Li  Xue Zhang  Yi‐Chen Liu  Kang‐Yu Zou  Man‐Li Yue
Institution:College of Chemistry and Material Sciences, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, P. R. China
Abstract:Herein, four new cadmium metal–organic frameworks (Cd–MOFs), Cd(bib)(bdc)] ( 1 ), Cd(bbib)(bdc)(H2O)] ( 2 ), Cd(bibp)(bdc)] ( 3 ), and Cd2(bbibp)2(bdc)2(H2O)] ( 4 ), have been constructed from the reaction of Cd(NO3)2 ? 4 H2O with 1,4‐benzenedicarboxylate (H2bdc) and structure‐related bis(imidazole) ligands (1,4‐bis(imidazol‐1‐yl)benzene (bib), 1,4‐bis(benzoimidazol‐1‐yl)benzene (bbib), 4,4′‐bis(imidazol‐1‐yl)biphenyl (bibp), and 4,4′‐bis(benzoimidazol‐1‐yl)biphenyl (bbibp)) under solvothermal conditions. Cd–MOF 1 shows a 2D (4,4) lattice with parallel interpenetration, whereas 2 displays an interesting 3D interpenetrating dia network, 3 exhibits an unusual 3D interpenetrating dmp network, and 4 presents a 3D self‐catenated pillar‐layered framework with a Schäfli symbol of 43 ? 63]2 ? 46 ? 616 ? 86]. The structural diversity indicates that the backbone of the bis(imidazole) ligand (including the terminal group and spacer) plays a crucial role in the assembly of mixed‐ligand frameworks. By using the pore‐forming effect of cadmium vapor, for the first time we have utilized these Cd–MOFs as precursors to further prepare porous carbon materials (PCs) in a calcination–thermolysis procedure. These PCs show different porous features that correspond to the topological structures of Cd–MOFs. Significantly, it was found that the specific surface area and capacitance of PCs are tuned by the Cd/C ratio of the MOF. Furthermore, the as‐synthesized PCs were processed with KOH to obtain activated porous carbon materials (APCs) with higher specific surface area and porosity, which greatly promoted the energy‐storage capacity. After full characterization, we found that APC‐bib displays the largest specific surface area (1290 m2 g?1) and total pore volume (1.37 cm3 g?1) of this series of carbon materials. Consequently, APC‐bib demonstrates the highest specific capacitance of 164 F g?1 at a current density of 0.5 A g?1, and also excellent retention of capacitance (≈89.4 % after 5000 cycles at 1 A g?1). Therefore, APC‐bib has great potential as the electrode material in a supercapacitor.
Keywords:activation  metal–  organic frameworks  mesoporous materials  microporous materials  supercapacitors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号