首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis,characterization of low density polyhydroxy polyurethane foam and its application for separation and determination of gold in water and ores samples
Authors:EA Moawed  MF El-Shahat
Institution:1. Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt;2. Chemistry Department, Faculty of Science, Ain Shams University, Egypt
Abstract:In this work, a new type of sorbent (low density polyhydroxy polyurethane Foam, LPPF) was synthesis by using water hydrolysis of polyurethanediazonium chloride salt. LPPF was characterized using different tools e.g. elemental analysis, UV–vis and IR spectra, TGA, SEM, density and pHZPC. It was tested for separation, preconcentration and determination of gold in environmental samples using batch and dynamic techniques. The sorption experimental data was fitted by the pseudo-first kinetic mathematical equation (R2 = 0.991). The sorption rate of the Au (III) ions is very fast, the half-life (t1/2) ≈ 34 s. The equilibrium process is well described by the Freundlich isotherm model, the R2 value is 0.967, which attributed to the heterogeneous surface structure of the LPPF. The breakthrough capacity of LPPF and the recovery of gold ions were 0.36 mmol g−1 (70.5 mg g−1) and 99–100%, respectively. The lower detection limit of gold by using spectrophotometric method is 3.3 ng L−1 with preconcentration factors ≈ 450 (RSD ∼ 1.66%, n = 4). The values of ΔG and ΔH for the sorption of gold onto LPPF were −12.5 and −103.5 kJ mol−1, respectively, which indicate that the sorption of Au (III) onto LPPF is spontaneous and exothermic reaction. The obtained results indicate that the ion chelation and ion association might be the most probable mechanism of gold sorption onto LPPF. The study shows LPPF has the potential of application as an efficient sorbent for the extraction and determination of gold in water, gold alloys pharmaceutical and granite samples.
Keywords:Gold  Polyhydroxy polyurethane foam  Granite  Multi-vitamin  Recovery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号