首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of a highly robust solid phase microextraction fiber based on crosslinked methyl methacrylate–polyhedral oligomeric silsesquioxane hybrid polymeric coating
Authors:Chunyan Chen  Xiaotong LiangJianping Wang  Shaolei YangZhihong Yan  Qingyun Cai  Shouzhuo Yao
Institution:State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
Abstract:A novel solid-phase microextraction (SPME) fiber was prepared by polymerization of an organic–inorganic hybrid polymeric coating on an anodized and derived Ti wire, and applied for the analysis of polycyclic aromatic hydrocarbons from environmental samples followed by high performance liquid chromatography (HPLC) analysis. A polyhedral oligomeric silsesquioxane (POSS) reagent containing methacryl substituent groups was used as an organic–inorganic hybrid cross-linker, and copolymerized with methyl methacrylate (MMA) to fabricate the hybrid coating via thermally initiated free radical polymerization in a glass capillary mold. The prepared fiber can be easily withdrawn from the glass capillary mold by controlling the polymerization conditions, especially polymerization solvent. A homogeneous and porous coating with thickness of about 100 μm was achieved using ethanol as polymerization solvent at the mass ratio of MMA to POSS as 1:0.5. High chemical and mechanical stability, as well as excellent durability for more than 100 times extractions with almost undiminished extraction efficiency were achieved due to the chemical immobilization and crosslinked hybrid coating. The proposed fiber showed much better extraction performance than the 100 μm commercial polydimethylsiloxane fiber for extracting PAHs from aqueous sample. The developed SPME-HPLC method for the determination of PAHs using the MMA–POSS hybrid coating achieved good linearity with good correlation coefficients (R = 0.991–0.999) and low detection limits in the range of 0.006 to 0.05 ng mL−1 (S/N = 3). The proposed fiber was successfully applied to the extraction of PAHs from environmental water samples with recoveries of 82–104% for river water, 83–103% for pool water, and 79–98% for wastewater, respectively.
Keywords:Solid phase microextraction  Polyhedral oligomeric silsesquioxane  Hybrid coating  Ti wire  Polycyclic aromatic hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号