首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective separation and purification of highly polar basic compounds using a silica-based strong cation exchange stationary phase
Authors:Zhen Long  Zhimou GuoXingya Xue  Xiuli ZhangXinmiao Liang
Institution:Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract:Compared to moderately and weakly hydrophilic bases, highly polar basic compounds are even more difficult to separate due to their poor retention in reversed phase (RP) mode. This study described the successful applications of a strong cation exchange (SCX) stationary phase to achieve symmetric peak shape, adequate retention and selectivity in the separation of very polar basic compounds. Salt and acetonitrile concentrations were adjusted to optimize the separation. Good correlations (R2 = 0.998–1.000) between the logarithm of the retention factor and the logarithm of salt or acetonitrile concentration were obtained. Gradients generated by changing salt or acetonitrile concentration were compared for the analysis of different highly polar bases. Although all of the analytes were eluted more quickly with an acetonitrile gradient, the effect of the gradients tested on peak width and peak shape varied with respect to analyte. In addition, the effects of different types of cation and anion additives were also investigated. After separation parameters were acquired, the SCX-based method was utilized to analyze highly hydrophilic alkaloids from Scopolia tangutica Maxim with high separation efficiency (plate numbers > 32,000 m−1). Concurrently, one very polar alkaloid fraction was purified with symmetric peak shape using the current method. Our results suggest that SCX stationary phase can be used as an alternative to RP stationary phase in the analysis and purification of highly hydrophilic basic compounds.
Keywords:Strong cation exchange  Highly hydrophilic bases  Purification  Natural product  Symmetrical peak shape
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号