首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy-neural-network
Authors:Juntao Fei  Weifeng Yan
Affiliation:1. Jiangsu Key Lab. of Power Transmission and Distribution Equipment Technology, College of Computer and Information, Hohai University, Changzhou, 213022, China
Abstract:An adaptive control of MEMS gyroscope using global fast terminal sliding mode control (GTSMC) and fuzzy-neural-network (FNN) is presented for micro-electro-mechanical systems (MEMS) vibratory gyroscopes in this paper. This approach gives a new global fast terminal sliding surface, which will guarantee that the designed control system can reach the sliding surface and converge to equilibrium point in a shorter finite time from any initial state. In addition, the proposed adaptive global fast terminal sliding mode controller can real-time estimate the angular velocity and the damping and stiffness coefficients. Moreover, the main feature of this scheme is that an adaptive fuzzy-neural-network is employed to learn the upper bound of model uncertainties and external disturbances, so the prior knowledge of the upper bound of the system uncertainties is not required. All adaptive laws in the control system are derived in the same Lyapunov framework, which can guarantee the globally asymptotical stability of the closed-loop system. Numerical simulations for a MEMS gyroscope are investigated to demonstrate the validity of the proposed control approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号