首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular hydrogen and oxygen interactions with armchair Si nanotubes
Authors:Haoliang?Chen  Email author" target="_blank">Asok K?RayEmail author
Institution:1.Department of Physics,University of Texas at Arlington,Arlington,USA
Abstract:Molecular hydrogen and oxygen adsorptions on a (6, 6) armchair silicon nanotube have been studied by optimizing the distances of the admolecules from both inside and outside the tube. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP functional. The molecule is originally placed perpendicular or parallel to the tube axis. Hydrogen adsorption with the molecular axis aligned parallel to the surface of the nanotube is less favorable. Hydrogen molecule does not dissociate while oxygen molecule dissociates after optimization. The on-top site is the only preferred site for hydrogen molecule with an adsorption energy of 3.71 eV and an optimized distance of 3.31 for external adsorption whereas the on-top site is the most preferred site with adsorption energy of 3.69 eV for internal adsorption. For oxygen, the molecule dissociates and the most preferred sites are the two bridge sites with an adsorption energy of 9.64 eV, the optimized distance being 1.65/1.68 Å when it is adsorbed from the outside of the tube. When oxygen molecule is originally placed at on-top site it will hold as a molecule after adsorption with a slightly increased bond length. For the internal adsorption of oxygen, the molecules also dissociate in most cases and the zigzag bridge site is the most preferred site. After molecular adsorption for both hydrogen and oxygen, the buckling of the nanotubes increased. Frustration effects in the nanotube due to molecular adsorption are also noted.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号