首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical study of Favorskii reaction stereochemistry. Lessons in torquoselectivity
Authors:Hamblin Graham D  Jimenez Raphael P  Sorensen Ted S
Institution:The Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
Abstract:The mechanisms of the chloroenolate-->cyclopropanone step of the "normal" Favorskii rearrangement have been investigated in detail using high-level ab initio calculations. A series of simple alpha-chloroenolates, based on chloroacetone (6), all monomethyl derivatives (7-9), a dimethyl analogue (10), and 1-acetyl-1-chlorocyclohexane (11) was first used to explore and define the basic features of the mechanism, which include the finding of both an "inversion" and a "retention" transition state and that in most cases these arise from separate ground-state conformations of the chloroenolate. These theoretical studies were then extended to an isomeric pair of chloroenolates 1 and 2, the cis- and trans-2-methyl derivatives of 11, which are the reactive intermediates involved in a well-known experimental study carried out by Stork and Borowitz (S-B). Finally, three alpha-chlorocyclohexanone enolate systems 12-14 were studied, since these intermediates have a more restricted enolate geometry. The "inversion" mechanism has been described as an SN2 process but the present results, while supporting a concerted process, is better described as an oxyallyl structure undergoing concerted ring closure. The "retention" mechanism has been described as SN1-like, but the calculations show that this process is also concerted, although much less so, and again involves oxyallyl-like transition-states. The model systems 6-8, 10, and 11 with a potential plane of symmetry have two enantiomeric transition states for inversion and another two for retention of configuration (at the C-Cl center). With 9 and the S-B models 1 and 2, with no symmetry plane, there are a calculated total of four diastereomeric transition states for cyclopropanone ring closure in each case, two for inversion and two for retention. While the transition-state energies calculated for simple chloroenolates favor the inversion process, the S-B models 1 and 2 have almost equal inversion-retention transition-state energies. Solvation simulation calculations of ground states and transition states suggest that the retention mechanism becomes relatively more favored in polar solvents, in agreement with some experimental results. In the chloroenolates 12-14, both inversion and retention mechanisms were also located, these arising from two different ground-state ring conformations of the enolate. In these models, one also finds similar inversion and retention transition-state energies, but again with a small preference for the inversion process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号