首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient exploration of reaction paths via a freezing string method
Authors:Behn Andrew  Zimmerman Paul M  Bell Alexis T  Head-Gordon Martin
Institution:Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, USA.
Abstract:The ability to efficiently locate transition states is critically important to the widespread adoption of theoretical chemistry techniques for their ability to accurately predict kinetic constants. Existing surface walking techniques to locate such transition states typically require an extremely good initial guess that is often beyond human intuition to estimate. To alleviate this problem, automated techniques to locate transition state guesses have been created that take the known reactant and product endpoint structures as inputs. In this work, we present a simple method to build an approximate reaction path through a combination of interpolation and optimization. Starting from the known reactant and product structures, new nodes are interpolated inwards towards the transition state, partially optimized orthogonally to the reaction path, and then frozen before a new pair of nodes is added. The algorithm is stopped once the string ends connect. For the practical user, this method provides a quick and convenient way to generate transition state structure guesses. Tests on three reactions (cyclization of cis,cis-2,4-hexadiene, alanine dipeptide conformation transition, and ethylene dimerization in a Ni-exchanged zeolite) show that this "freezing string" method is an efficient way to identify complex transition states with significant cost savings over existing methods, particularly when high quality linear synchronous transit interpolation is employed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号