首页 | 本学科首页   官方微博 | 高级检索  
     


A theoretical study of the effect of intraventricular pulsations on the pathogenesis of hydrocephalus
Authors:K.P. Wilkie  S. Sivaloganathan
Affiliation:a Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2J 3G1
b Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
c Centre for Mathematical Medicine, Fields Institute for Mathematical Sciences, Toronto, ON, Canada M5T 3J1
Abstract:Hydrocephalus, a condition which affects thousands of people annually in the US alone, arises as a result of a build-up of cerebrospinal fluid (CSF) in the brain’s ventricular cavity due to an imbalance between the rates of CSF production and absorption. Although the earliest known instances of hydrocephalus date back to the time of Hippocrates, the pathophysiology of hydrocephalus is still poorly understood, and is the subject of active debate in the literature. Recently, the pulsations of the cerebrospinal fluid have been suggested as a possible mechanism for ventricular expansion. In this paper, we attempt to determine the significance of these pulsations in the development of hydrocephalus by simulating their mechanical effects on the brain. The brain parenchyma is modelled as a fractional Zener viscoelastic solid, which extends the work previously presented in Sivaloganathan et al. [S. Sivaloganathan, M. Stastna, G. Tenti, J. Drake, A viscoelastic model of the brain parenchyma with pulsatile ventricular pressure, Appl. Math. Comput. 165 (2005) 687-698]. Explicit solutions for the displacement and stresses are obtained by solving the boundary value problems corresponding to the cases of infant and adult hydrocephalus. As expected, when the cranial vault is a rigid container, as in adult hydrocephalus, very small displacements are predicted.
Keywords:Viscoelasticity   Brain biomechanics   Fractional derivative   Hydrocephalus   Ventricular pulsations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号