首页 | 本学科首页   官方微博 | 高级检索  
     检索      


THE EFFECT OF MOLECULAR POLARIZATION ON THE ELECTROCHROMISM OF CAROTENOIDS—I. THE INFLUENCE OF A CARBOXYLIC GROUP
Authors:Roland  Reich Kai-Udo  Sewe
Institution:Max-Volmer-Institut für Physikalische Chemie und Molekularbiologie, Technische Universität Berlin, Strasse des 17. Juni 135 D-1000 Berlin 12, F.R.G.
Abstract:Abstract— Electrochromism of oriented all- trans -β-apo-8'-carotenoic acid is studied in thin capacitors. The linear electrochromism is very strong, in contrast to that of symmetrical carotenoids. It is proportional to the first derivative of the absorption spectrum. The quadratic electrochromism can be described as a superposition of fractions proportional to the first and second derivatives of the absorption spectrum. The permanent dipole moment difference between the ground state and the excited state of the carotenoic acid molecule is Δμ= 3.6 × 10-29 C·m (±20%) (10.7 Debyes). The polarizability difference parallel to the long axis of the molecule is Δα|| = 1.17 × 10-37 C·m2·V-1 (±20%) (1050 Å3). Furthermore, the relative permittivity of the solid carotenoic ethyl ester is r= 3.5 ± 0.2.
Δμ is due to the polarizing force of the carboxylic group. This force is equivalent to a mean local electric field of F t≅3 × 106V/cm. Such a "local field" may also be exerted on a symmetrical carotenoid in the membrane of photosynthesis, e.g. by asymmetrical complex formation with a polarizing molecule. To obtain an effective permanent field of F p≅ 2 × 106V/cm across the membrane, as postulated in photosynthesis, a local field of F l≅ 5.5 × 105 V/cm would be sufficient. F p is shown to be directed from inside to outside of the thylakoid. To realize this, e.g. a positive polar (i.e. electron-attracting) complex partner of the carotenoid, located more to the inside of the thylakoid, can be postulated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号