首页 | 本学科首页   官方微博 | 高级检索  
     


Structural, electronic, and optical properties of 9-heterofluorenes: a quantum chemical study
Authors:Chen Run-Feng  Zheng Chao  Fan Qu-Li  Huang Wei
Affiliation:Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.
Abstract:Density-functional theory studies were applied to investigate the structural, electronic, and optical properties of 9-heterofluorenes achieved by substituting the carbon at 9 position of fluorene with silicon, germanium, nitrogen, phosphor, oxygen, sulfur, selenium, or boron. These heterofluorenes and their oligomers up to pentamers are highly aromatic and electrooptically active. The alkyl and aryl substituents of the heteroatom have limited influence, but the oxidation of the atom has significant influence on their molecular structures and properties. The highest occupied molecular orbital (HOMO)-lowest occupied molecular orbital (LUMO) interaction theory was successfully applied to analyze the energy levels and the frontier wave functions of these heterofluorenes. Most heterofluorenes belong to type B of interaction with low-lying LUMO and have the second kind of wave function. Carbazole and selenafluorene have type C of interaction with high-lying HOMO and the third kind of wave function. Types C and D of heterofluorenes, such as carbazole, oxygafluorene, sulfurafluorene, and selenafluorene also have high triplet state energies. The extrapolated HOMO and LUMO for polyheterofluorenes indicate that polyselenonafluorene has the lowest LUMO; polycarbazole has the highest HOMO; polyselenafluorene has the highest bandgap (E(g)); and polyborafluorene has the lowest E(g). Heterofluorenes and their oligomers and polymers are of great experimental interests, especially those having extraordinary properties revealed in this study.
Keywords:fluorene  heterofluorene  polyheterofluorene  DFT  HOMO‐LUMO interaction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号