The Design of a Next Generation Force Field: The X-POL Potential |
| |
Authors: | Xie Wangshen Gao Jiali |
| |
Affiliation: | Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis MN 55455. |
| |
Abstract: | An electronic structure-based polarization method, called the X-POL potential, has been described for the purpose of constructing an empirical force field for modeling polypeptides. In the X-POL potential, the internal, bonded interactions are fully represented by an electronic structure theory augmented with some empirical torsional terms. Non-bonded interactions are modeled by an iterative, combined quantum mechanical and molecular mechanical method, in which the molecular mechanical partial charges are derived from the molecular wave functions of the individual fragments. In this paper, the feasibility of such an electronic structure force field is illustrated by small model compounds. A method has been developed for separating a polypeptide chain into peptide units and its parameterization procedure in the X-POL potential is documented and tested on glycine dipeptide. We envision that the next generation of force fields for biomolecular polymer simulations will be developed based on electronic structure theory, which can adequately define and treat many-body polarization and charge delocalization effects. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|