首页 | 本学科首页   官方微博 | 高级检索  
     检索      

BLOCK-SYMMETRIC AND BLOCK-LOWER-TRIANGULAR PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS*
摘    要:Optimization problems with partial differential equations as constraints arise widely in many areas of science and engineering, in particular in problems of the design. The solution of such class of PDE-constrained optimization problems is usually a major computational task. Because of the complexion for directly seeking the solution of PDE-constrained op- timization problem, we transform it into a system of linear equations of the saddle-point form by using the Galerkin finite-element discretization. For the discretized linear system, in this paper we construct a block-symmetric and a block-lower-triangular preconditioner, for solving the PDE-constrained optimization problem. Both preconditioners exploit the structure of the coefficient matrix. The explicit expressions for the eigenvalues and eigen- vectors of the corresponding preconditioned matrices are derived. Numerical implementa- tions show that these block preconditioners can lead to satisfactory experimental results for the preconditioned GMRES methods when the regularization parameter is suitably small.

关 键 词:约束优化问题  预条件  下三角  对称  PDE  Galerkin  离散线性系统  GMRES方法
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号