首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors
Authors:Zhang Qing  Xu Jing-Juan  Chen Hong-Yuan
Institution:The Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Abstract:We propose a convenient and reliable approach for immobilizing microbeads on poly(dimethylsiloxane) (PDMS) microchips. It is built upon a simple fabrication procedure of PDMS chip through directly printing the master with an office laser printer which was described in our previous work (J. Chromatogr. A 2005, 1089, 270-275). On the printed toners used as the positive relief of the master, microbeads were immobilized by a thermal treatment and then transferred to the surface of the microchip by direct molding of the prepolymer on the master. With this approach, the region-selective immobilization of microbeads and the fabrication of PDMS microchips can be accomplished at the same time. Then, using these microbeads as supports, further modification with enzyme was achieved. Surface characteristics of the microbeads-modified PDMS microchannels were investigated with scanning electron microscope, atomic force microscope, and inverse fluorescence microscope. The electrokinetic properties of the native PDMS and the modified PDMS chips were also compared. Based on this approach, an immobilized glucose oxidase (GOD) reactor was constructed and the reaction using glucose as substrate was studied. All these experiments aim to show that the proposed approach may have a good potential in the study of biochemistry and other related areas.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号