首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational Mechanistic Elucidation of the Intramolecular Aminoalkene Hydroamination Catalysed by Iminoanilide Alkaline‐Earth Compounds
Authors:Dr Sven Tobisch
Institution:University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom), Fax:(+44)?1797‐383‐652)
Abstract:A comprehensive computational exploration of plausible alternative mechanistic pathways for the intramolecular hydroamination (HA) of aminoalkenes by a recently reported class of kinetically stabilised iminoanilide alkaline‐earth silylamido compounds {N^N}Ae{N(SiMe3)2} ? (thf)n] ({N^N}=iminoanilide; Ae=Ca, Sr, Ba) is presented. On the one hand, a proton‐assisted concerted N?C/C?H bond‐forming pathway to afford the cycloamine in a single step can be invoked and on the other hand, a stepwise σ‐insertive pathway that involves a fast, reversible migratory olefin 1,2‐insertion step linked to a less rapid, irreversible metal?C azacycle tether σ‐bond aminolysis. Notably, these alternative mechanistic avenues are equally consistent with reported key experimental features. The present study, which employs a thoroughly benchmarked and reliable DFT methodology, supports the prevailing mechanism to be a stepwise σ‐insertive pathway that sees an initial conversion of the {N^N}Ae silylamido into the catalytically competent {N^N}Ae amidoalkene compound and involves thereafter facile and reversible insertive N?C bond‐forming ring closure, linked to irreversible intramolecular Ae?C tether σ‐bond aminolysis at the transient {N^N}Ae alkyl intermediate. Turnover‐limiting protonolysis accounts for the substantial primary kinetic isotope effect observed; its DFT‐derived barrier satisfactorily matches the empirically determined Eyring parameter and predicts the decrease in rate observed across the series Ca>Sr>Ba correctly. Non‐competitive kinetic demands militate against the operation of the concerted proton‐assisted pathway, which describes N?C bond‐forming ring closure triggered by concomitant amino proton delivery at the C?C linkage evolving through a multi‐centre TS structure. Valuable insights into the catalytic structure–activity relationships are unveiled by a detailed comparison of {N^N}Ae(NHR)] catalysts. Moreover, the intriguingly opposite trends in reactivity observed in intramolecular (Ca>Sr>Ba) and intermolecular (Ca<Sr<Ba) HA catalysis for the studied family of iminoanilide alkaline‐earth amido catalysts are rationalised.
Keywords:alkaline‐earth metals  density functional calculations  homogeneous catalysis  hydroamination  reaction mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号