首页 | 本学科首页   官方微博 | 高级检索  
     


Ellipsoidal classification via semidefinite programming
Affiliation:1. Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, Rende, Italy;2. Dipartimento di Informatica, Università di Pisa, Pisa, Italy;3. Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Cagliari, Italy
Abstract:We propose a classification approach exploiting relationships between ellipsoidal separation and Support-vector Machine (SVM) with quadratic kernel. By adding a (Semidefinite Programming) SDP constraint to SVM model we ensure that the chosen hyperplane in feature space represents a non-degenerate ellipsoid in input space. This allows us to exploit SDP techniques within Support-vector Regression (SVR) approaches, yielding better results in case ellipsoid-shaped separators are appropriate for classification tasks. We compare our approach with spherical separation and SVM on some classification problems.
Keywords:Classification  Semidefinite programming  Artificial intelligence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号