首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum field theory of phase transitions in Fermi systems
Authors:RD Mattuck  Börje Johansson
Institution:1. H. C. ?rsted Institute, University of Copenhagen , Denmark;2. NORDITA , Copenhagen, Denmark;3. FOA 4 , Stockholm 80, Sweden
Abstract:The theory of fermion phase transitions is reviewed from a unified field theoretic standpoint, based on the diagrammatic perturbation expansion of a generalized matrix propagator. Transitions from a normal to a condensed phase are characterized by the spontaneous appearance of long-range order and (in the presence of a suitable infinitesimal external field) broken symmetry. This is illustrated by the ferromagnetic, solid, superconducting and spindensity wave ground states. The phenomenon is explained qualitatively as caused by the creation of a long-range internal field, F, due to the interactions between particles. This field establishes long-range order in the system, and is in turn itself established by the long-range order, in a self-consistent fashion. The mechanism here is expressed quantitatively in terms of a self-consistent Dyson equation relating a generalized matrix propagator, G, to a proper self-energy matrix, Σ. The off-diagonal elements of G describe ‘anomalous’ propagation processes which are characteristic for the condensed phase, and they yield directly the long-range order parameters. The Σ-matrix is just the potential of the internal field. The method is illustrated by applying it to the ferromagnetic phase of a system with δ-function interaction between particles. Finally, the technique is used to derive the vertex part equation for the transition point.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号