首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 /spl mu/m
Authors:Kik  PG Polman  A Libertino  S Coffa  S
Institution:Dept. of Appl. Phys., California Inst. of Technol., Pasadena, CA, USA;
Abstract:A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5-/spl mu/m light by Er/sup 3+/ ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10/sup -3/ can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 /spl mu/m.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号