首页 | 本学科首页   官方微博 | 高级检索  
     


Topological Field Theory and Computing with Instantons
Authors:Massimiliano Di Ventra  Fabio L. Traversa  Igor V. Ovchinnikov
Affiliation:1. Department of Physics, University of California, San Diego, La Jolla, CA;2. MemComputing, Inc., San Diego, CA, USA;3. Electrical Engineering Department, University of California, Los Angeles, CA
Abstract:It is well known that dynamical systems may be employed as computing machines. However, not all dynamical systems offer particular advantages compared to the standard paradigm of computation, in regard to efficiency and scalability. Recently, it was suggested that a new type of machines, named digital –hence scalable– memcomputing machines (DMMs), that employ non‐linear dynamical systems with memory, can solve complex Boolean problems efficiently. This result was derived using functional analysis without, however, providing a clear understanding of which physical features make DMMs such an efficient computational tool. Here, we show, using recently proposed topological field theory of dynamical systems, that the solution search by DMMs is a composite instanton. This process effectively breaks the topological supersymmetry common to all dynamical systems, including DMMs. The emergent long‐range order – a collective dynamical behavior– allows logic gates of the machines to correlate arbitrarily far away from each other, despite their non‐quantum character. We exemplify these results with the solution of prime factorization, but the conclusions generalize to DMMs applied to any other Boolean problem.
Keywords:dynamical systems  topological field theory  instantons
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号