首页 | 本学科首页   官方微博 | 高级检索  
     


A method for conformational sampling of loops in proteins based on adiabatic decoupling and temperature or force scaling
Authors:Kunz Anna-Pitschna E  van Gunsteren Wilfred F
Affiliation:Laboratory of Physical Chemistry, Swiss Federal Institute of Technology ETH, Zürich, Switzerland.
Abstract:A method for conformational Boltzmann sampling of loops in proteins in aqueous solution is presented that is based on adiabatic decoupling molecular dynamics (MD) simulation with temperature or force scaling. To illustrate the enhanced sampling, the loop from residues 33 to 43 in the bovine protein ribonuclease A is adiabatically decoupled from the rest of the protein and the solvent with a mass scaling factor s(m) =1000 and the sampling is enhanced with a scaling of the temperature using s(T) =2 or of the force using s(V) =0.667. Over 5 ns of simulation the secondary structure of the protein remains unaltered while a combined dihedral-angle conformational cluster analysis shows an increase of conformations outside the first most populated cluster of loop conformations for adiabatic decoupling MD with temperature scaling using s(T) =2 or force scaling using s(V) =0.667 compared to the standard MD simulation. The atom-positional root-mean-square fluctuations of the C(α) atoms of the loop show an increase in the movement of the loop as well, indicating that adiabatic decoupling MD with upscaling of the temperature or downscaling of the force is a promising method for conformational Boltzmann sampling.
Keywords:Boltzmann sampling  computational chemistry  conformational analysis  molecular dynamics simulations  protein structure
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号