首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction
Institution:Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
Abstract:Ground-level ozone is one of the primary pollutants detrimental to human health and ecosystems. Catalytic ozone decomposition still suffers from low efficiency and unsatisfactory stability. In this work, we report a manganese-based layered double hydroxide catalyst (Co3Mn-LDH), which exhibited a superior ozone decomposition performance with the efficiency of 100% and stability over 7 h under a GHSV of 2,000,000 mL g?1h?1 and relative humidity of 15%. Even when the relative humidity increased to 50%, the ozone decomposition also reached 86%, which significantly exceeds as-synthesized MnO2 and commercial MnO2 in performance. The catalytic mechanism was studied by H2-TPR, FT-IR and XPS. The excellent performance of Co3Mn-LDH can be attributed to its abundant surface hydroxyl groups that ensured the preferentially surface enrichment of ozone, as well as the cyclic dynamic replenishment of electrons between multivalent Co2+/Co3+, Mn2+/Mn3+/Mn4+ and oxygen species that endowed the stable ozone decomposition. This work offers new insights into the design of efficient catalysts for ozone pollution control.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号